
wave; T, temperature; T 0, temperature of the ambient medium; Tm, maximum temperature of the 
steady state; t, time; Atme, time from the onset of localization to the melting of the materi- 
al; c, p, k, the heat capacity, the density, and the thermal conductivity of the dielectric; 
a, heat-transfer coefficient; c s, the Stefan-Boltzmann constant; z, emissivity of the dielec- 
tric; 0, ~, q, r, dimensionless temperature, electric-field strength, a coordinate, and time. 
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AN ANALYTICAL MODEL OF THE STRESS-STRAIN STATE OF AN AXISYMMETRIC 

ELASTIC BODY UNDER CONDITIONS OF A TWO-DIMENSIONAL TEMPERATURE FIELD 

A. M. Stolin, L. S. Stel'makh, and N. N. Zhilyaeva UDC 539.377 

We have derived an analytical solution for the thermoelasticity problem involv- 
ing the stress-strain state of an axisymmetric body subjected to the action of 
a two-dimensional temperature field. 

We are called upon to deal with the problem of studying the stress-strain state (SSS) 
of a cylindrical elastic body in the presence of a temperature distribution that is a func- 
tion of two spatial coordinates and of time, T = T(r, z, t) [i, 2]. This problem is partic- 
Ularly urgent for combustion-engineering processes which take place under markedly nonsteady 
and nonisothermal conditions [3]. Propagation of the combustion front over the specimens 
in these processes result in nonuniform thermal effects both in the lateral and longitudinal 
directions. 

If the temperature is a function solely of one coordinate r and the time t, T = T(r, t), 
we generally make use of the analytical solutions for plane thermoelasticity problems [2, 
4, 5]. Let us note that the ability of the models to solve this problem is based on the hy- 
pothesis of plane sections. Within the framework of this hypothesis, for an SSS symmetrical 
relative to the z axis it is possible to determine only the normal stresses, whereas the tan- 
gential stresses are assumed to be equal to zero. If the thermal effects are nonuniform along 
the length of the cylinder, the plane sections undergo bending. In this case, the tangential 
stresses may prove to be significant and they cannot be ignored. The problem becomes more 
complicated if we take into consideration the two-dimensionality of the temperature field 
and for the solution of the problem we generally make use of numerical methods. At the same 
time, for a number of questions which require both qualitative and quantitative investiga- 
tion, it might prove to be useful to have an analytical solution of the three-dimensional 
problem. Among these questions we can point to the following: determining the criterial 
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conditions which make possible the application of certain analytical models from the plane 
theory of thermoelasticity, and also a study of the role played by tangential stresses in 
the SSS of the material. 

In this study we have found an analytical solution for the thermoelastie problem per- 
taining to the SSS of a cylindrical body under the conditions of a two-dimensional tempera- 
ture field, when the strain gradients in the longitudinal direction are small. 

i. Let us examine the SSS of a long thin-walled cylinder with an inside radius a 0 and 
an outside radius b0, subject to the action of a temperature field. We will assume that ex- 
ternal forces are absent on the contour, and that the temperatures producing the stressed 
state in the material, symmetrically relative to the axis of the cylinder, depends on two 
coordinates and on time: T = T(r, z, t). We will employ the quasistatic approach [6] in 
which time enters only as a parameter, the deformation process is steady, and the variations 
in the mechanical characteristics are subject to a change in the temperature which is as- 
sumed to be given. With this approach, the thermal portion of the problem is solved inde- 
pendently of the mechanical portion, which is valid if the temperature field is independent 
of the strains which it produces. 

Let us assume that the deformation pattern changes only slightly in the longitudinal 
direction, i.e., the distribution of the deformations in altitude must be subject to the fol- 
lowing conditions: 

Os~ = el (r, z), O~e Os~ 
0--7- 0--7- = ~ (~' z), ,, = ~ (r, z), a z  ( 1 )  

where slur, z) are small functions. The order of smallness in e i will be determined below. 
Let us consider the principal differences in the assumption defined by equalities (i) and 
the plane-section hypothesis used in the analytical model of the "infinite cylinder" [2]. 
The sections perpendicular to the z axis remain two-dimensional when the following conditions 
are met : 

i) the strains are independent of the z coordinate, i.e., 

0e~ ~ 0, 0Co = 0, 0e---i-~ = 0 ;  ( 2 )  
Oz Oz Oz 

2) all of the points of the fixed section z = const exhibit identical longitudinal displace- 
ments w (Sw/Sr = 0), while the tangential-stress component ~rz is equal to zero (the remain- 
ing tangential-stress components Tz8 and ~r0 are equal to zero because of the conditions of 
symmetry). 

The nonuniformity of the thermal effect over the length of the cylinder leads to a dis- 
tortion of the shape of the plane sections and to their bending. In this case, the tangen- 
tial stresses may prove to be significant and they cannot be neglected. Conditions (i) also 
encompass those cases in which the shearing strain and the tangential stresses are not equal 
to zero, which makes it possible to study their influence on the SSS of the material. Let 
us note that the satisfaction of these conditions must be achieved as a consequence of cer- 
tain limitations on the form of the temperature function T = T(r, z, t). 

Let the material be homogeneous and isotropic, while with consideration of the tempera- 
ture strains the rheological behavior of the material is subject to Hooke's law, which we 
will write in Lame form: 

~E 
~ - -  ~,,(e~ -+- e e  + -  e z )  - 6  2Oe , ,  - -  AT, 

1 - -  2v 

o~e = ~ (s~ -+- ~o -4- e~) "4- 2Gee o ~ E  AT, ( 3 ) 
1 - -  2v 

a E  
~ = ~ (e~ + ee + e~) + 2Gs~ - -  AT, "~z = G~&~. 

1 - -  2v 

Generally speaking, the moduli of E and G and the coefficients v and ~ change over time. The 
variability of E, G, v, and a is governed by the nonsteadiness and nonuniform heating of the 
material at high temperatures. We will assume that all of these parameters are constant, 
and we will refer these to the mean temperature of the process which is assumed to be known. 
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Taking the Cauchy equations into consideration, these linking the strain component and 
the components of the displacements: 

Ou u am Ou am 
e~ = Or eo = - -  8~ , ~ + - - ,  ~o ~o O, ( 4 )  

r Oz Oz Or 

and s u b s t i t u t i n g  (4 )  i n t o  ( 3 ) ,  we o b t a i n  an e x p r e s s i o n  f o r  H o o k e ' s  law in  t e r m s  o f  t h e  d i s -  
p l a c e m e n t s :  

Ou u + a m )  ou ~zE 
(~ = ~" ar + - -  a--~ + 2 0 - -  - - A T ,  

Or 1 - -  2~ 

au ~ + am ~ u czE 
~o = ~ - - - - +  + 2G - - A T ,  

O r  Oz ] r 1 - -  2v r 

o. + am 
�9 ~ = O  ~ O r ]  

(5) 

(because of the symmetry conditions no tangential displacement occurs: v = 0). 

The equilibrium equations written for the case in which there are no external forces 
have the following form: 

O~ O~ (~--~e oT~ 4- O~ ~..,,T~ 
Or + --~--z + - 0 ,  _ = 0 .  (6)  r Or 0z " r 

S u b s t i t u t i o n  o f  e x p r e s s i o n s  (5)  i n t o  (6 )  g i v e s  us  t h e  e q u i l i b r i u m  e q u a t i o n s  in  t h e  d i s p l a c e -  
ments  : 

a~u 1 au u OT O2w a2u 

Or2 + = g l ~  g~ araz az 2 r Or r 2 - -  g~ - - '  ( 7 )  

a2w 1 am aT ( a2u 1 au ~ 1 a~w 
Or2 ~- - g 2 - - ~ -  z - -  g 5  J r  . . . .  ] �9 (8) r Or \ OrOz r Oz g~ Oz z 

Taking the Cauchy equations into consideration in (i) for displacements (4), we obtain 

0e~z ----02m - - e  l(r,  Z), --Oe 0 = I __0U _e , . ( r ,  z), 
Oz az 2 Oz r Oz ( 9 )  

ae~ O~u 
= "8 (r, z )  

Oz aroz 

L e t  us  d e t e r m i n e  t h e  o r d e r  o f  s m a l l n e s s  f o r  e i in  ( 9 ) .  We w i l l  assume t h a t  t h e  t e r m s  e i in  
Eq. (8 )  e x h i b i t  t h e  f o l l o w i n g  o r d e r  o f  s m a l l n e s s :  

(i0) 

(7) is small: 

(il) 

g~ OT 
I~I << . ~ �9 

In addition, we will assume the condition that the second derivative in Eq. 

~ 1 OZu << gl--.aT 

az z r Oz 2 Or 

N e g l e c t i n g  t h e  s m a l l  t e r m s  f rom (10)  and (11)  in  Eqs.  (7) and (8), we obtain: 

aZu I ou u aT a2w 

Or ~ F - -  = g l  g~ , r Or r z ~ r  araz 

OZw 1 Ow OT 

a r  2 r Or az 

Having twice integrated Eqs. (12) and (13), we find the expressions for u and w: 

(12) 

(13) 
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.u(r, z ) =  gl T(r ,  z) r d r - - . g ~ .  Ow rdr q - - - a ( z )  q - - -  
r r ~ Oz 2r r 

ao ao 
(14) 

~ 1 ~i OT r (r, z) = g2 - -  �9 rdrdr q- In - -  c (z) + d (z). ( 1 5 )  
r Oz ao 

Oo ao 

The unknown functions a (z), b(z), c(z), and d(z) which appear as a result of the integration 
are found from the boundary conditions prevailing at the contour of the cylinder. 

Having substited the expressions for u and w into (5), we obtain the formulas for the 
stresses: 

2Ggl [ 2Gg3 Ow rdr -- O Ow O a~ 2Ob (z) 
~r = r z ~ - r - ' - 7 - - -  - Oz Oz -k (~ + G) a (z) + 7 a (z) r ~ ,  

GO ao 

UO 
Jf i 2 2Gb(z) ( 1 6 )  Ow 2Gg3 am rdr -~- (Z Jr- G) a (z) - -  G ao a (z) -{- - - ,  2Ogl Trdr -- 2OglT (r, z) q- ~,g~ 0~- r e Oz 

r 2 f2 f2  
ao ao 

(Zg, ( l  z 
+ 2G) ~ - ,  ...... 2GENT (r, z) q- ~a (z), 

" a T  r z -  a~ 
O (gl "JI- g2) i" r d r  -}- G a (z). Trz ~ 

r ~ az 2r 
aO 

I n  c o m p a r i s o n  w i t h  t h e  c a l c u l a t i o n  o f  s t r e s s e s  b a s e d  on t h e  o r i g i n a l  s y s t e m  o f  d i f f e r e n -  
t i a l  equations (7) and (8), the calculations based on formulas (16) is considerably simpler, 
although utilization of the found analytical solution is based on certain simplifying assump- 
tions [see (i)]. 

2. The possibility of realizing conditions (i) is associated with certain limitations 
imposed on the nature of the external effects, in this particular case on the temperature 
function. It is physically obvious that in this case the temperature gradient along the 
length cannot be arbitrary. Let us find these limitations. 

Essentially, relationships (i) can be regarded as differential equations for the deter- 
mination of the displacements u and w; however, in this case they do not necessarily satisfy 
the original equilibrium equations (7) and (8). In its complete form this problem can there- 
fore be formulated as follows: find the displacements u and w to satisfy the equilibrium 
equations (7) and (8), as well as Eqs. (i). Since the number of equations in this case is 
larger than the number of unknowns, at first glance such a problem appears to be indeter- 
minate. However, if Eqs. (i) are regarded as auxiliary conditions of compatability which 
must be satisfied by determining the form of the temperature function, the system of equa- 
tions (i), (7), (8) under consideration is closed. 

It must be assumed in the more general case that in (i) s i = si(r, z). The considera- 
tion is somewhat simplified if we assume that s i = const, which encompasses also the case 
e i = 0. Having substituted the Cauchy equations for the displacements into (i), we obtain 

02w 1 Ou OZu 
------el, ----e2, ------83. (17) 

Oz z r Oz OrOz 

I t  i s  o b v i o u s  t h a t  o n l y  two o f  t h e s e  t h r e e  e q u a t i o n s  a r e  i n d e p e n d e n t ,  s i n c e  i t  c a n  be  demon-  
s t r a t e d  t h a t  E 2 = E 3. I n t e g r a t i o n  o f  ( 1 7 )  shows  t h a t  u and  w m u s t  be  r e p r e s e n t e d  i n  t h e  f o r m  

Z2 
W (Z, Z) ~-- 81 ~ -  -~ a 1 (f) Z -~- b I (r), ( 1 8 )  

u(r, z)= ~,rz+a~(r), 

where at(r) = 8w/3z(r, 0); b1(r) = w(r, 0); a2(r) = u(r, 0). 
pressions into Eqs. (7) and (8), we have 

, (19) 

Having. substituted these ex- 
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0 ( 1 0 ( a = r ) ) = g  OT Oa, 
Or �9 Or ~ E3 O----r- (20) 

0 (r Oa, ~ e (r Ob, 
-dr \ Or J -Jr- "-~-r \ - ~ r  ) 

OT 
= g 2 - - � 9  

Oz (21 )  

These equations determine the form of the temperature function T(r, z). Integration of (21) 
over z gives us 

Z 2 

T (r, z) -= f l  (r) -~ -  + f~ (r) z -t- q~ (r), ( 22 ) 

where f1(r) = (i/r)(a/ar)[r(aal/3r)]; f2(r) = (i/r)(a/3r)[r(~bl/3r)] ; ~p(r) = T(r, 0). Since 
(20) and (21) must define one and the same function T(r, z), the next derivatives a2T/(3rBz), 
determined from (20) and (21), must be equal to each other. Since 32T/(Sr3z) = 0 from (20), 
then 82T/(araz) determined from (21) must also be equal to zero, i.e., 

0'-7" = f~ (r)  z + f~ (r)  = 0. 
OrOz 

Finally, we find that in order to satisfy conditions (17) the temperature function must 
have the following form: 

T (r, z) ~- Clz 2 + C,,z n t- q) (r), ( 23)  

where C 1 and C 2 are arbitrary constants, and ~(r) is an arbitrary function. 

In the general case in which e i = ei(r, z) in (i), it is no longer possible to determine 
the form of the temperature function which governs the ability of the model conditions to 
be satisfied. However, in this case we can indicate the limitations imposed on any change 
in temperature in the z direction. Let us estimate the difference IT(r, z) -T(r, 0)[. In- 
tegrating (17) and taking into consideration E i = el(r, z), we obtain 

2 Z 

~v (r, z) = .[ dz .[ ~, (r, z) dz -~- a, (r) z -~- b t (r), ( 24 ) 
0 0 

z 

U (�9 Z) = �9 .[ e z (r, z) dz --~ ct z {r). ( 2 5 )  
0 

Substituting (24) and (25) into (12) and (13): 

o (, o o , ) , + ,  o (roe,) 
-7 -gr ~ a�9 ] ; a�9 ~ --gT ~ 

z z 

+ ' a ( ,  o,, t . ,  
--/-o "6 --~'r \ Or ] 

OT 
Oz (26)  

( )S( 0 1 0 (~r) + 3 0% Oze= _ O~l ~ Ob, 07" 

or , o�9 - - g # + � 9  + g , _ _ g _ _ g ,  or Or = - -  (27)  

Having twice differentiated (26) with respect to z, we have 

1 0 fr 0e , )  ~ T  (28) 
r Or ~ Or ] =: g= Oz 3 

Because  o f  t h e  m o n o t o n i c i t y  o f  T ( r ,  z) in  t h e  bounded r e g i o n  t h e r e  e x i s t  such  c o n s t a n t s  M1, 
M 2, and M 3 that 

Oz= ~ ( 2 9 ) 

From the physical standpoint the following quantities have been limited: 

-~--~ ~, a�9 / . r ar ~, - o ' ; - r / I  (30) 
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Integrating (26) and taking into consideration (28)-(30), we obtain 

IT (r, z) - -  T (r, 0)1 ~ Mlz. + M=z= + M.z. (31) 

I n e q u a l i t y  (31)  d e f i n e s  t h e  u p p e r  bound o f  t h e  v a r i a t i o n s  in  t e m p e r a t u r e  T , ( r ,  z)  a t  which  
the assumptions of the model are satisfied: 

T,  (r, z) : M1 z3 --~ M~z z q- M3z'-q- ~(r), IT(r, z ) [ ~  IT, ir, z)l. (32)  

L e t  us  n o t e  t h a t  as  M 1 § 0, l i m i t a t i o n  ( 3 2 ) ,  o b t a i n e d  a t  t h e  t e m p e r a t u r e  f o r  t h e  c a s e  
in  which  E i = ~ i ( r ,  z ) ,  c h a n g e s  i n t o  c o n d i t i o n  (23)  f o r  E i = c o n s t .  I n  v i ew  o f  (13)  and ( 2 9 ) ,  
we o b t a i n  

]O~'------~-Wl~CM~g2,az z 

and according to (9): 

'MI'<<] aT ] ~M3" 

Hence it follows that the coefficient M I is small and conditions (32) and (23) are quite close 
to each other. As was demonstrated earlier, on satisfaction of condition (23), Eq. (27) is 
also satisfied. 

Thus, if the experiment gives us T(r, z, t) (this information can be obtained on the 
basis of the thermal model by numerical calculation [7]), we are still confronted with the 
problem of best approximating a temperature function of the form of (23) or (32). If such 
a problem can be resolved, the assumptions of the model with regard to the limited strain 
gradients in altitude are satisfied and we can make use of the proffered analytical solutions 
of (16). 

A number of questions pertaining to the derived analytical solution remain beyond the 
scope of this paper. We have already made mention of the need to find integration constants 
for specific boundary conditions, of the need to carry out numerical calculations to analyze 
the SSS of the material, and in particular, to study the effect of tangential stress on the 
material, as well as to find the criterial conditions for the applicability of known ana- 
lytical solutions for plane problems from the theory of thermoelasticity. These problems 
will be dealt with in the following portion of this project. 

NOTATION 

T, temperature of the body; r, z, %, the radial, vertical, and tangential cylindrical 
coordinates; t, time; Sr, s0, Ez, deformations in the radial, tangential, and longitudinal 
directions; Yrz, Yr0, Yz0, shearing strains; Or, oe, o z, components of the normal stress in 
the radial, tangential, and longitudinal directions; Trz ~ Tre, ~ze, tangential stress com- 
ponents; ~, c2, s3, small quantities; ~, G, elastic Lame constants; v, Poisson coefficient; 
~, coefficient of linear temperature expansion; E, Young's modulus; AT, elevation of tempera- 
ture, i.e., the difference between the initial temperature T o and the temperature at a given 
instant of time T(t); u, w, v, displacement vector components in the radial, vertical, and 
tangential directions; gl, g2, g3, g4, gs, constants determined by the following expressions: 
gl = ~(i + v)/(l - v), gz = 2~(i + ~)/(I - 2~), g3 = 1/2(1 - v), g4 = (i - 2v)/2(i - ~), 
gs = i/(i - 2~); M I, M 2, M3, C I, C 2, C are constants. 

, 

2. 

3. 

4. 
5. 
6. 
7. 

LITERATURE CITED 

M. F. Mikhalev (ed.), Design and Construction of Machines and Equipment in the Chemical 
Industry [in Russian], Leningrad (1973). 
A. N. Podgornyi, G. A. Marchenko, and V. I. Pustynnikov, Fundamentals and Methods in the 
Applied Theory of Elasticity [in Russian], Kiev (1981). 
A. G. Merzhanov, "The combustion process: theory and practice," Preprint, OIKhF AN 
SSSR, Chernogolovka (1980). 
S. P. Timoshenko, The Theory of Elasticity [Russian translation], Moscow (1937). 
L. I. Sedov, The Mechanics of Continous Media [in Russian], Vol. 2, Moscow (1970). 
G. Parkus, Nonsteady Temperatures Stresses [Russian translation], Moscow (1963). 
L. S. Stel'makh and A. M. Stolin, Theory of Mechanical Processing of Polymer Materials. 
Abstracts of Reports to the All-Union Symposium, Perm' (1985), p. 173. 

477 


